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Computation of the
Residual Radiation Trancwission Factor for

the Marine Corps LVTP7

by
Robert G. Cawley

We develope an analyticel technique for computing the gamma
radiation reductior factor for a slab of arbitrary orientation in a
field of uniformly distributed radioactive fallout (Co®°). We
apply this to a model of the army M113 APC, assuming the entire
reduction is due to material in the vehicle walls, ceiling and floor.
The ruovlting protection, P = 1.5, differs sharply with the measured
value, P = 4.0, which we assume is due to the presence of other
material than that in the vehicle surfaces. As a second model of
the M1ll3 we assume its shape to be that of a parallelepiped having
a square vertical cross section of side L, unifcrm wall thickness

teff and height equal to the actual vehicle height. We choose L
and teff so that the surface area and total mass ~f the model vehicle

agree with those of the actual vehicle. A 107 albedo correction to

the protection then results in agreement with experiment:
M113

Riheory = 3-9+ We apply the same approach to the LVIP7, getting
RLVTP7 = 4,1, The radiation reduction factors, R = p:l for these
theory

two cases are 0.26 and 0.24 respectively: and the residual radiation
transmission factors, defined from R to inclul. the effects of a
ground roughness parameter of 3 ft, are both 0.3.

The analytical method also should be useful to save computation
time An1d cost in numerical work.
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Computation of the Residual Radiation Transmission Factor for the
Marine Corps LVTP7.

This report gives a new method for calculating the y-radiaticn
transmission through a plane slab of arbitrary orientation, above a
field of uniformly distributed radioactive fallout. The method is
applied to the Marine Corps LVTP7 to estimate the residual radiatcion
transmission factor. The work was sponsored by the U. S. Marine
Corps Development and Education Command.

The author wishes to thank M. A, Schmoke for a discussion, and for
securing certain data pertaining to the army M113 APC, and C. M.
Huddleston for discussions and for assistance in obtaining reference
material, and fnr reading the report.
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I, INTRODUCTION

The present work reports tue results of an effort to compute the
protection factor and the residual radiation transmission factor
(RRTF:defined in Section 2) for the Marine Corps LVTP7 troop carrier
in a field of radioactive fallout. The P7 is similar to another
vehicle, the army M113 APC {armored personnel carrier), for which
experimental data are available,! and we have used those results in
our method. Briefly, we have developed an approximate analytical
technique, which enables us to calculate the protection factor for
an enclosure whose walls are composed of plane slabs having arbitrary
orientations.

Applied to a fairly faithful model of the M113 geometry and using
for wall thicknesses the actual values, the calculated value of the
protection factor is P = 1,53, much lower than the experimental
value of 4.0. The reason for this discrepancy is that the mass of
the M113 in the model is less than half the mass of the actual
vehicle in the (combat loaded) experimental conditions, so there is
gquite a bit more "extra" material actually vresent to enhance the
protection over that afforded by the model; this material includes
the engine, treads, wheels, axles, fuel, troops, interior panelling
sur faces, and sundry paraphernalia, the mass distribution of which
it is impractical to try to take into account. 1In the first place
the labor involved would be enormous, and the results withal
probably not trustworthy. Even more significantly, there is a
"thecretical error"” inherent in the notion of vehicle protection
factor, a circumstance which makes too precise a result meaningless:
the actual protection factor varies from place to place inside the
vehicle owing to the irregular mass distribution (including shape),
and to dependence of the radiation scurce intensity on height above
the ground. Variations aricing from these, and other effects as
well, are at least 10 - 15%, experimentally,! so the complexity of
the actual circumstances has the effect of easing the calculational
problem.

To deal with the problem of the extra mass we have idealized the
actual vehicle by a rectangular parallelepiped with sguare shape and
having height equal to that of the actual vehicle. The wall thick-
ness and the size of the square were fixed by requiring equi:iity
between the miasses and surface areas of the actual vehicle and the
model vehicle. The equation of the protection factor has an
especially simple approximate form for this geometry, and the
results we have obtained are in good agreement with experiment.

Egs. (6.18 and (6.17) give the values repcrted in Reference 1,
respectively, for the "survey correlation factor," which, for the

1
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experimental conditions of ground roughness, was .86 times the
protection factor, and the calculated results from our model, which
assumes a 10% albedo contribution to the reduction factor.

The results for the P7, modeled in this way, as a square rectan-
gular parallelpiped, are given in Section 6 (egs. (6.20)and (6.22)).

The outline of the report is this. In Section 2 we establish
the character >f the physical approach we have adopced, present
source and buildup data, motivate our choice for ground roughness
parameter, and give the general expressions of the protection factor,
the survey correlation factor and the RRTF. 1In Snction 3 we ex-
plicate the geometrical problem of the reduction factor (unscattered
component) for a plane slab of arbitrary orientation, introducing
a certain shape approximation which exploits essential features of
the source. In Section 4 we develope the principal analytical
formulas for the slab reduction factor and solid angle factor.

In Section 5 we present the results of the M113 model calculaticn
which neglects the "extra matter" actually present but not contained
in the walls. In Section 6 we present details of the parallelepiped
model and give results for both the M113 and the P7. 1In Section 7
we discuss the results, and in Section 6§ we give a brief summary of
what we have done and offer a concluding remark concerning
application of our method to computer programing.
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2. PRELIMINARY CONSIDERATIONS

#\. Physical Approach

We assume the exposure at a point inside the vehicle to be
a sum of contributions from all directions, with that from any given
direction expressed as the product of a buildup factor with the
exporientially attenuated unscattered component deriving from an
assumed angular dependent source. For the source distribution we
assume a form derived from curves given by Spencer,2 for air,
above an infinite plane of uniformly distributed fallout, simulating
effects of ground roughness by using an effective height above the
ground which is augmented by an amount Ah over the actual height.?
The normalization of the angular distribution, 4 (h,x), where
X = cos 6, 8 the angle of the line of sight from the detector
position, of the incident y ray with the downward vertical, is set by
the usual condition,

+1
L(h) =I_ld x L(h,x) =1, for h = 3 feet (2.1)

To neglect of albedo, the reduction factor fors detector height

h ('heff = h + Ah if there is ground roughness) due to a slab of

thickness %_and surface L,

is .
r, =r (h) = Bo(ti)E

: o, (ht)) (2.2)

i i
where B, (tj) is the buildup factor for the given slab material,
whose thickness is t;, and E. (ty) is®
i

E _(h,ti) = E%:fdogzg(Q)L(h,cose)exP( secB86,), (2.3)
i 3

- t
g W3, ay

where y_ is the inverse attenuation length for the substance of
which T° is composed, 8, is the angle formed by the incident y-ray
and the normal to £, B is the so-called refraction parameter, which
depends on the slab material,® and the "step" function gy (Q) is
unity if the line of sight of the direction indicated by Q
intersects ¥, and is zero otherwise. 1In the came spirit the re-
duction factor inside the enclosure, at height h--above the ground
is understood--is

f(h) = aR = ayr

prs, (Noge) - (2.4)

where the summation extends over all the surfaces of the enclosure.
In eq. (2.4) we have included an overall factor a to account for
albedo, i.e. the contribution to the exposure from y rays back-
scattered from the interior faces of the enclosure. The protection
factor within the enclosure at height h is defined by
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P(h) = L(3 feet)R L = /7L, (2.5)

by eq. (2.1) it is the ratio of the exposure in the

standard unprotected position (3 feet above a smooth infinite plane
of uniformiy distributed fallout) to the exposure at height h
within the enclosure under (assumed) given ground roughness con-
ditions. The survey correlation factor, S, reported in Reference
1, is a similar ratio, with the measured exposure at h = 3 feet
replacing that for the standard unprotected position; so

S(h) = L (3 feet + Ah)R Y = L(3 feet + Ah)P. (2.6a)

Since L(h), defined in eq. (2.1), is a decreasing functign of h,
S(h) is smaller tlan P(h). We define the RRTF to be§ —l:

RRTF = S'l. (2.6b)
B. The Source

If the source wewrz that due solely to unscattered y-rays of
energy E, we would have
L{h,x)

4 (h,x)

c x_lexp(-uéhx_l), x>0, (2.7)

0 x<0,

where u R is the y-ray attenuation length in air for energy E, and
c is a normalization coefficient. 1In Figures 1 and 2 we have re-
produced two of the curves from Reference 2, plots of {(h,x) for

h = €.6 feet and h = 66 feet, together with plots of eq. (2.7) for
values of u_ such that the location of the peaks of the former co-
incide with those of the latter, which occur at

X = uah =N, (2.8)

and with normalization of (2.7) chosen so that the heights of the
peaks coincide. For h = 6.6 feet the agreement for x> 0 is
extremely good and for h = 66 feet the disagreement is of order 10%,
or so. Our interest is in height values appropriate to the 6.€ feet
case.

To very good accuracy, to quite a bit better than 5% for heights
of interest to us, we are justified in using the form (2.7) for
x >0. For the skyshine part, x<0 , we assume a parabola centered
at x = -1,

t(h,x) = ¢y + ¢y (x+ 1), (2.9)
requiring the constants <y and c, to be chosen so that
L(h,-1)/2(h,0) =.195 (2.10)




*@inBly 9y Ul uMBIP BAIND DY} §O >P3D BY} Y4IMm SSPIDUIOD IAIND

~ugpuodsailod ayj jo joad ay4 4oy os uesoyd 3 puo 21 pup ‘"4 979 = Y yim “(£°Z) "be ul uaaib uoyduny ayy

A.0US $3s504D 9Y| “wnuydads uolssly Iy Z| | ‘4 9°9 4YS19yY ‘11D Of Pa|DIs ‘494DM Ul (g 9IUDI9)91 WO UDXDY)
9AIND P[0 “4NO|[1yy 94 14OD0IPDI 40 duD|d 94U UD BAOGR (g SOD = X) UOlNGLIsIP Jp|nBup ainsodx]

I+ 80 9°0 v 0 Z0 0 z°0- ¥ 0- 9°0-

l "ol
870~

_..I

N SN D R S SN S e S S S SR E——— e s S s, (U

NOLTR 73-137

0°Z




*aAIND paysop b Aq pautol usaq BADY $5SAID Y BIBH 44 99 = Y YiM inq ‘|l *9l4 se swog 7 "9l

I+ 8°0 ?°0 y°0 Z'0 0 Z2'0- ¥ 0- 90~ 8 0- -

_________.g,_________coo
/

l
]
i
|
I
I
_
_

— oe'0

NOLTR 73~137

J43IH JOUYI %0E

WIH YOU¥3 %01

— 070

i b i et e L s S i




NOLTR 73-137

which is good to <5% between h = 3.3 feet and h = 33 feet. We fix
the relative normalization between the x< 0 and x>0 parts by
requiring

S = .110L, (2.11)
where 0
5 = LERILECY (2.12)

is the skyshine contribution to L. Between 3 feet and 33 feet S
rises from .093L to .125L, from curves in Reference 2; interpolation
gives S = .105L for h = 6.6 feet, while direct measurements from
Figure 1 have given us eq. (2.11).

The normalization coefficient ¢, in eq. (2.7), still remains to
be fixed; it is a buildup factor, and it depends on h. Also,we need
to choose a value for p;. First the latter: the contribution to
L from x > 0, assuming the form in eq. (2.7), is cEl(u) where Ej (1)
is the exponential integral,

» @ —l
El(n)=‘/n dyy texp(-y) ; (2.13)
we equate this at h = 6.6 feet to

L(6.6 feet) - S(6.6 feet) = .890L(6.6 feet),
taking L(6.6 feet) - .87 from Spencer®, to get

c(6.6 feet)El(x(G.G feet)) = .774. (2.14)
But, with x = x locating the peak, we have also

e - fen) = 8 (2.15)

where 1p is the peak value of 4, which is 4.15 for h = 6.6 feet;
combining these gives

-1
nEl(n)|6.6 feot = -774 - (4.15e) " = .0686, (2.16)
vhose solution is # = ,0207 (to about 3%), so that*
u;l = 6.6 ft. + .0207 = 319 feet, or 97m,
u, = -003134 et (2.17)

* The value 97m seems a little low for the spectrum from
which Spencer's curves are calculated; this was a 1.12
nr. fission spectrum, for which, using spectrum data
given in Reference 2, we have estimated ;, ~ & 123m, to
perhaps 15%. 2
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If we use eq. (2.15), taking » = u_h and reading 4 from
Spencer's clurves, we obtain a set of values of c¢ whichPean be fit
with a straight line

c = .,2169 + .835x , 4 ft s h s 42 ft., (2.18)
while for h = 3 ft. we get

c(3 ft.) - .2172 (2.19)
From egs. (2.10), (2.11) and (2.18) we obtain c, and Cys and with
this the complete form for £(h,x),

x-lexp(-uahx-l). x>0,
L(h,x) =¢ - {

.264E (u_h)[.195 + .805 (x+1)2], x<o. (2.20)

This can be used for 4 ft. sh<42 ft. even though (2.10) and

(2.11) weaken above 30 ft., for the whole skyshine contribution is
not much more than 15 to 20% of the total below h = 42 ft. When we
integrate (2.20) using (2.19), we find L(3 ft.) = 1.000.

The source function, eq (2.20), is not quite what we want,
however. We need to shift the value of u, if we wish to compare
with experiments of Reference 1, where Co%0 was used as the y-ray
source. The co®0 spectrum contains two principle peaks, at 1.17 MeV
and 1.33 MeV. If we idealize this as a single peak at 1.25 Me¥V, the

attenuation length in air is

m
A e (2.21)

where A/2 = 2 is the atomic weight to number ratio for air,

p = 1.312 x 10-3 gm/Cm3 is the density of air (STP), m _the
mass of the proton,cth the Thompson cross section, p
g - 8n r2 &
th - 3 %o %o
and f(E) is the Compton cross section for y erergy E, in units of*

cth' We get

= ez/néc2 = classical electron radius,

u;l(l.zs MeV) = 131.7 m = 431 ft

-1
u, = -002314 £t (2.22)

which are somewhat different from the values appearing in (2.17).
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To convert to the Co60 spectrum, we simply take over eq.
12.20), regarding the right side as a function of » = uah, valid
between x, = .003134 £t x 4 £t = .01254, and n, = .003134 eel %
42 ft = .1316, where the » dependence of ¢ is indicated by eq.
(2.18) . There is an overall normalization change affecting the
coefficients in =2q. (2.18), however, arising from the fact that the
normalizaticn condition, eq. (2.1), holds for any M, - We bave, at
h = 8 Ee ;

c(3 ft, .002314 el

) =N . o(3 f£t, .003134 £t 1) (2.23a)

while from egs. (2.1) and (2.20) with n, = .002314 A

c(3 ft, .002314 ft—l) x 1.1222 E. (.006942) = 1 (2.23b)

whence

1

N = .938 (2.24)

We assume that the same factor scales the source to the new value
of My for other values of h and we get

c = .2034 + .783uah, 5.5 ft. <h< 55 ft.,

= .2038, h = 3 ft. (2.25)

The limits of validity to (2.25) are determined as x_ /u_ and
1 " a
nz/ua (compare eq. (2.18)).

Summarizing, the source is given in egs. (2.20) and (2.25),

for the case of a Co60 source.

C. Buildup Factor for Transmission through a Wall.

Taking the data of Reference 3, we can fit the buildup factor,
as a function of (normal) wall thickness, to a straight line. For
X out to 2 mean free paths (which is all we need) we have, for
concrete, or aluminum

Bo =1+ .76X, (2.26)

when X is the mass thickness in units of u-l. For aluminum,

1

using eq. (2.21) with p = 2.72 gm/cm3, we have u—l = 2.60

in, so that

Bo =1+ .292 t (2.27)

where t is the wall thickness in inches. This is good to a percent
or so.
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D. Ground Roughness

The data of Reference 1 permit the determination of the
ground roughness parametex, Ah, which existed under the conditions
of the experiment. Figure 3 shows a plot of the reported unprotec-
ted exposure as a function of height h, normalized to unity at 3
feet, and Figure 4 shows four theore’ical curves of L(h+Ah), for
Ah = 0,3,6, and 9 feet, with zeros of ordirate chosen so that all
curves pass through the same point at h = 3 feet. When the two
figures are superposed, the experimental curve lies on top ¢f the
theoretical curve having Ah = 3 feet. _For comparison purposes
therefore we adopt thjs value for the ground roughness parameter
throughout, We notice that if h < 5 feet then #<.002314x(S5+3) =
.0185<<1, a fact we exploit below.

10
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3. PLANE SLAB HAVING ARBITRARY ORIENTATION

A. Geometrical Preliminaries

We choose cartesian coordinates (xo,yo) in the plane of the slab,
s ) q A : = .
L, with the X, - axis* horizontal and the §; - axis forming an

angle a with the vertical, where a = + g- for the floor (Figure 5).

The origin cf coordinates, O, is the intersection of the perpendi-
cular to the XY~ plane from tre detector position D = D(0,0,zl)

where 2_.20 is the distance from slab to detector; the detector is

positioned at height h above the horizontal plane of the ground.

In addition we employ spherical cocrdinates, with origirn at D and

polar axis pointing down. The co-latitude angle of the point

P(xoyOO) at which the incident y-ray passes through T is 8, by the
» ’

definition given above eq. (2.1). Theunit veéctor which points from D to
P is M and the azimuth of 7 in the plane parallel to the ground
(through D) measured from + gc\, counter-clockwise from above, is o,
the second polar viriable of the point** P, 1In Figure 5 we have
included also an auxiliary (primed) set of cartesian axes, having
the same origin 0 and yc: - axis pointing vertically upwards. From

= -?' cos 8 + R cos ® - 2 sin ¢)sin 8 (8.1)
o o o

o=l 2 (3.2a)
o o

/y\' = -7% <cina + §" cos a, (3.2b)
o o o

2 =% cosa +% sina (3.2¢)
o o o

we have

o= &\o cos ® sin 8 - /y\o(cos ® cos & + sin 8 sin a sin )

+ ’20 (cos ® sin a-sin 8 cos a sin o). (8.8)

*Generally, we use the carat to denote a direction (unit) vector

* %
The spherical coordinate system is left-handed.
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GRS

‘T
/ Ground, T

FIG. 5 Geometry of slab (2) orientotion, detector (D) position, y-roy path (PD) through 2 from
the ground, " . For the configuration shown, a>0.
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Ve denote the vector OP by p‘l; and PBD by r; so that

- A - A Mo
Ip = Iph = g - zlzo 3.4)
and - Q
= +
Pp = X X y09° (3.5)
2 2 2. %
— + v + -~
ry (xo Yo zl) 3 (3.6

whence, using eq. (3.4), we find

= = s 8§ = - - i o
x x(qub) co rP Y  cos o rP z,sin a (3.7)
-1 : -1
=1 i + .
tan ¢ xo y, sin a X, 2y cos a, (3.8)
and
9 (x -3
= -z r ) (3.9)
o] (xo'yo) 1 P

so that integrals of the type appearing in eg. (2.3) can be
performed on the plane of the slab,

1 _ Gl
P
where the "left" and "right" edges of ¥ are located at X, = %1 and
X, =X, respectively, and the "lower" and "upper' edges by
Y. =y, and y = y,, respectively. It we let
o) 1 2 -1
- -1 o
g xoz1 ;oM =Y 2y, (3.11)
thon for (3.10) we may write
n2
=L [ang_(q) dg i (22 1] 2 (3.12)
2" gz = 1'] i ’ -
where £, = x z-1 ¢! = z-1 i=12
i- %% anemy T¥iE . e

We also need to express 6 in terms of the cartesian variables;
from

cos §_ = . (2), (3.13)
with eq. (3.3},
cos 8o = - cos § sin a + sin 8 cos o sin @, (3.14)

15
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whence with the aid of egs. (3.7) and (3.8)

2

+ 1)-!i

2
cos Bo = (€ + n L (3.15)

which also can be seen by inspection (Figure 3).
B. Basic Geometrical Approximation Scheme

There are two classesnof slab orientation we need to consider:
(1) ‘a\ well away from 3, as in the case that T is a wall; and

({1) a = * Hy where £ is a ceiling or a floor. For the latier we
adopt the approximation scheme described in Reference 2, which
replaces I by another slab, L,, formed of suitable combinations of
circles ard annular sectors -- so we discuss only case (i) here.

The integrand of eq. (2.3) is peaked at x = x owing to the form
of £(h,x). The intersection of the plane of ¥ and the cone of
constant x with vertex a*t the detector is a conic section, and
L(h,x) is constant along this curve. We exploit this fact by trans-
forming integrations over T to elliptical coordinates, wu,v, in the
plane of £, so chosen that the curve x = #, which (normally) is a
hyperbola, coincides with one of the curves of constant v: V= MK
From eq. (3.7) )

2 -
x = -(§ + ﬂz + 1) % (n cos o + sin a), (3.16)
so the hyperbola, which results when cos2 a > x2 is

where, for x =«

b = sin a cos a (cos2 a - uz)-l (3.18)

Ztana + 0(x?), xk<<1, (3.18°)
a2 = uz(l-uz)(cos2 o - KZ)-Z (3.19a)
¢ = (1-x%(cos?a -1, (3.19%)

The angle |%| formed .y the’Qb - axis and the asymptates to (3.17)
is given by

tan |Y¥|
(V]

a/E = % leosact o) 7 (3.20)
1 ), el (3.20")

13
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1

D = zl(a2 + cz)ﬁ
)
= zl(l - uz)ﬁ cos a(c052a - nz) (3.21)
: 2z seca + o(x%), n<<l. (3.217)

We introduce the elliptical coordinates as follows. We let

. = . P = .
r, and r, be distances of P(quo) from Pl(o, bzl D) and PZ(O' bz, +D)

1

and define
u = (2D)‘1(r1+r

Je v = () Hr Ty, (3.22)

We need the following relations, which follow from the above :

n =0z uv - b (3.23)
1 2 2 :

sec 60 = (E°+ n°+1)7

B s 2 _v31-0 215

= Dz1 (u” - 2v6vu + v vl(l A ) 17, (3.24)

where
v = sina and v, = -% sec a, (3.25)
o 1l

the latter being the value of v for which x = ® holds; also

2)17%,  (3.26)

_ 2, 2 2 2
X = - cos a(uv vovl)[u - 2vouv + v vy (b = vy

2
3(8,m) _ D 2 _ 20,2 _ 204k
d(u,v) (zl) (u v )l 1) (1 ) ] . (3.27)

For the approximation to small #x, we drop ths vf terms in egs.
(3.24) and (3.26),

sec 6°'= sec eo(u2 - 2vouv + vz)))i (3.241)
X = - uv cos a(u2 - 2vouv + vz)-% (3.261)
For eqg. (3.10) we have
% Idngz(n)--- = 9(2’%'3 ”Zdudv(u2 - vz)[(u2 -1)(1 - vz)]_l‘i
x (02 - 2v_uv + vz)'3/2 .. (3.28)

whare the cos a 3§ front comes from the scale factor
(D/zl)2 © (D/zy) " (cf.eqgs. (3.24) and (3.27).

17
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The integrand of EZ’ in eq. (2.3), is proportional to

4 (h,x) exp (-azsec 890)
where
as = uts. (3.29)

We approximate this by takirng B % 1:

sec B8 =sec § - (1-B)8 sec § tan 8 + - - -,
o o o o o
-Te)
-a B8 - 8
e LSOOG % = e ay sec (1 + (1 -8)8 sec 8 tan 6 +---)(3.30)
o o o
. -ay 6
= e zsec (o} (3.30I)
The approximation to (3.30 ) is reasonable if la] is not too
large, so that eo is relatively small in regions where 4 (h,x)
peaks. For x>0 we have
L(h,x)e 3L 5€¢ 8o _ cx-lexp[-x_l(n - azuv)], x>0, (3.31)
by egs. (2.20), (3.24"), (3.26"), and for x<0,
~1
L(h,x) = [c1 + c2(x + 1)2] exp (x aztnﬂ, x<0. (3.32)

The main observation now is that x(u,v) is only weakly u -
dependent in regions where 4(h,x) is big. To see this we evaluate
(L, v fomly o 2l o 2 . . 2.-3/2

a§>—-cosoL(u-Zsa.nOL-uv+v)
\

% (90 e hS = e (3.33)

where the spirit of the approximation is the same as that used to

get egs. (3.24’) and (3.26'); the exact expresrion for (3x/du),,
vanishes identically at v = vy =-# sec a, where x = #, znd for

v =0(n), (Bx/au)v 0(%2). For o = 0, we have

7oy 2 -3/2
lexpw) | 2] H°+1 ]

which, even for |v| = .4. satisfies |3x/du)v|> 5% since u » 1 by
eq. (3.22); and x(1,.4) = .36 ~ 20, for » = .018, a value larger
than is needed for our purposes. So in (3.31) and (3.32) we replace
x(u,v) with x(1,v), approximating the curves of constant 6, on T,
by curves of constant v, for values of v wvell away from vy where

this result is exact. The results are worked out in Section 4.

18
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Finally we :ntrnAnce a certain geometrical approximation zo'

to the shape T, which does not enjoy complete generality but which
does cover a reasonably wide range of circumstances, those of the
present application, in particular. We simply insert constant,
suitable chosen limits uye Uy, ar’ Vi Yy into the integral on the
right side of (3.28)so that

<L -
> Jafg (@) 2 5 fang. @ . .

-

D! v
5 S90S Qi Lclauj <2iv(u2 - vz)[(uz- Lyl - vz)]_

el i=1l Vi
X (u2 - 2 sin O .uv + v2)“3/2 e e, (3.34)
where the sum arises from the fact that the coordinates u,v only
cover half the XY, - plane, e.g. the x020 half, and we have assumed
that xl<0<x2. I Oz’(xlx ), the sum in (3.34) is replaced by a
’ v
difference; i.e., a single term, written as juaduj dv ..... suffices.
u, \'2Y

For all of the circumstances of interest to us here we may
choose u; to correspond to the ellipse passing through the point
(XO,YO) = (xi,o): this gives

. 2 2%, . 2 2 L
u. = sec ®i = (xi +D7)°/D = (1 + Ei cos a) °, (3.35)

The main fact making this choice possible is chat in all cases here
the upper and lower edges rf<§} at S = yl and Yoo lie between the
foci of the coordinate system, at Pl = Pl(o, - bzl - D) and

P, = P2(0, - bz, + D). 1In almost all of these the analogous choice

2 d:

for v. is a good enough approximation*, that v, correspond to the
hyperﬁola passing through (xo, yo) = (G yi). Then, by the second

of egs. (3.22), ard egs. (3.i8') and (3.21),

-] .
v, = + S + . 3.
i (yi bzl)D n; cos o sin a 3.36)

* The excepticn is dealt with in Section 5.
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Figures 6 and 7 show examples for two of the surfaces from the M113,
illustrating all of the abuve features. The chcice of z: defined

}
i by egs. (3.35) and (3.36) we refer to as the centered
: approximation.

;,
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M113 (APC)
25 (LOWER FRONT PLATE)
a= -30° ¥, (in)

P1 “-48.5

FIG. 7 Sarwe as FIG, 6, but 25 ra ~er than Z 4. Here the ellipse u = uy is tangent ta the
extension af the side edges since the midpoint of P)P; lies above the rectangle

(ycc> y] and yc°>y2).
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4. EXPRESSIONS FOR THE EZ'S, AND R,

A. Class i, Wall Slabs (|o| Away From m/2).

this
the

It suffices to treat the case xl = - x2 so that ul = u2;

is the symmetrical case. For the asymmetrical case, uy ¥ u,,
right side of (3.34) is the average of the two symmetrical results
for ul and u2.

We evaluate (3.34) first with the "¢ . " replaceqrby 1; the
resulting expression gives the solid angle factor for Lo at the

detector position, namely (2ﬂfltimes the solid angle substended at

D(0,0,2,) byio.

v, .
w2222 [ gyl au(u® - A -1 - vA1e
Yo uf 1 v,
X (u2 - 2 sin a.uv vz)-3/2 . (4.1)
Using &
p~3 = wi Y e (sin a) (D", | v/u|<1, (4.2)
L n u
m=1
where
p = p(sina) = (u2 -2 sin a - uv + v2);i (4.3)

and Pn is the Legendre polyromial of order n, the prime denoting
differentiation by the argument, we have

O V.
= fo3 o j du(u? -l)-%j zv(l-vz)-%[l-(v/u)zjv-l
LA 1 V1

wzo
-
'z‘Pl (sin a)(v/u)n. (4.4)
n
n=1
We define
Y2 _n, 2 =% % n-
I =X duu M (uf - 1)7° =j 48 cos "8 (4.5a)
n X -
Va2 Y,
g =] aw"ta - vh %o { ay sin ly, (4.5b)
n vy 20
where
v. = sin Y., i=1,2, (4.6)
i i

with ®2 given by eq. (3.35), and interchange orders of integration
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and summation to get

[--]
. cos al o . -
w. = ~ L.Pn (sin a)(InJn In+2Jn+2) (4.7)
o n=1
g
cos a
g Sosacv .
== (2n + l)Pn (sin a)1n+lJn+l' (4.8)
n=o
. o - o o ’ l 1 =
in which we have used the identity Pk+l(x) Pk-l(x) (2k+l)Pk(x).

The key feature of the expansion, eq. (4.8), is that successive
terms diminish rapidly owing to eq. (4.5b) : the expansion parameters
are the Yi because the lowest order term of the Taylor series for

Jn(*l,wz) is n-l(wzn- *f ). From egs. 4.5), (4.6) and (4.8) we have

. cos a S oF . L a2
wzo = r _®2v + 2 sin a sin ®2 ¢
5 2 3 V2
- ==(3 sin“a - 1)@>+sin®, cos @) - ¥~ + ---] . (4.9)
12 < 2 2 ¥

The solid angle factor for ¥ can be computed exactly for
comparison; it is the difference of the solid angle factors for the

rectangles £, and I ., having common upper edge at y = 0 and lower
: ; o)

edges at (reSpectively) == 5 and Y, =Y, (cf Figure 6),

- w_ , (4.10)

where, from eq. (3.12)

Ea ni
_1¢°® 2 2 -3/2 (4.11)
wy = Iodg jodn (€% + o2 + 1)
1
= 'd tan-l[ E (1 + 2, 52) -%] (4.12)
n 422 ny 2

For the case shown in Figure 6, z1 = 55,2", yl = =72.1",

y2 = -20.8", and x, = 49.1", which yields

2

wZ = .1016

The parameters gf Lo in the centered approximation are obtained
from eqs. (3.21°), (3.35), and (3.36) with a = 45°; we find D = 78",
@2 = .5620, wl = -.,2181, and wz = .4556, so that eq. (4.9) gives

24
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0. £ ,0852 + .0203 ~ ,0050 *# .1005,
o

which agrees with the exact result for w_. to less than 2%.

z

We apply to E. the methods used to obtain eqs. (4.8) and (4.9).
With the help of ed8. (3.26), (3.31) and (3.32) the analogue of
eq. (4.4) is

. cos a [0 2 -%r =%
EZ = -ﬁ——'fldu(u -1) dv(l-v ) = (v/u) i
0
1

[e(-v)cx-lexp(-xx-l) + e(v)(cl+c (x+l)2]

2

.exp(-Azu);LlP; (sin a) (v/u)®, (4.13)

where 6(v) denotes the unit step function, which vanishes for v<0, and

a2 -1
AZ = ~apvx (4.14)
In the approximation discussed near the end of Section 3,

x(u,v) ~ x(1,v), so that also A (u,v) ~ A (1,v). 1In parallel with
eqs. (4.5) we define

’n(v) = J?uu-n(uz-l)-%exp(-AZ(l,v)u) (4.15a)

Va2 1l -
] = j‘dvvn l(l—vz) %L (v), (4.15b)
n - 1
where 4(v) stands for the square bracketed expression in (4.13) with

x = x(l,v). We write 1 (v) as a Taylor series in v,

m=0 :

substitute this with egs. (4.15) into (4.13) and rearrange the
summations to get the analogue of eq. (4.8),

-8

1 (r-n)
g, 8B ) Jiep ), (20+1)P (sin a) nt1"™o0) (4.17)

r=o =o (r-n)!

E

Keeping only the first two terms, we obtain an apporoximation whose
spirit is only a little rougher than that of eq (4.9),
cos a

E. ~ [1(0 0, + (1‘1%0) + 3 5in & 1(0)(0»121

[T (4.18)
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The analogous approximation to w for the example of Figure 6,
just discussed, agrees with W to®a few percent (1.4%). We note that

(o) L
1, (0) = In(O) (4.19a)
(1) ,\y = _dAr
1, (O =~g—|- 15110
0
= a, tan a . In_l(O), (4.19b)
so eq. (4.18) may be rewritten as
cos a
Ezo ~ LI (O)Jl + (3 sin a "1, (0) + a, tan a-g (0))12](4.20)
If a = 0, this has an especially simple form;
1 =
Ezoz - 1.1(0)11, a =0. (4.21)

To complete the scheme we develope expressions for J. and J
for use in eq. (4.20). The I, (0) present no difficulty bé&cause
1 (0) is the Slevert integral: changing variables in eq. (4.15a),

11(0) Jde exp (-A (1,0)sec 8) = S(Az(l,o),®2), (4.22a)
which is tabulated;5 we note from egs. (3.26‘) and (4.4) that
A (1,0) = a, sec ®. (4.22b)

5(0) is found by dlfferentlatlng (4.22a),

_2s(a,8;) Ide sec 9 exp(-A sec 8)

oA

2 2 _;i
= jdu(u -1) "% exp (-Au), (4.23)
1
and this can be determined from the tabulation of S to adequate
accuracy by numerical differentiation. Finally by examining the
expansicns of In(O) in powers of ®2 for n =0 and n = 2 we can
produce the approximation,

1,(0) ~ =1,(0) +2 1,(0) + %o®= exp (-a, sec o). (4.24)

The coefficients of the expansions of both sides agree up to and

including the 03 - term.
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Turning to J, and 12, we treat the direct and skyshine parts
separately, writing

_ ., (d) (s)
Jn_Jn +Jn (4025)
(a)

where the integration in j extends over the range of values of v
for which x>0, while in Jnsl x<0 always holds. 1In the iategranc of

the direct contribution we extract a peak factor,

-(v cos a)-l exp [+ n(v cos G)-l],

and expand the rest in powers of v. Integrating term by term produces
a series of exponential integrals, Ek(gi), having small arguments
when x<<l

I I
B o= Joace™e

where

gi =% sec a ° (-Vi)-l, (4.26)

in which v, means v1 or v,. Using

oA
EZ(Ci) = Q-

i ¥ (-Ci) - El(ci),

we fiud, for vl<0<v2,
, _ 0
J{d) ~ C Sec a { 1(gl) - [e gsin a(l=-w(tan o + % cot a))v]vl}, (4.27a)

and for v,<v_<0,

1 2 v
() - . o =2
Jl ~ C sec a {[El(g) e sin ¢ (l-#{tan o + % cot a))v]vlj,
(4.27b)
also, for V1<O<v§'
(@) ~C 0
12 ~ C sec a { K sec a El(g) + [e (1 - » tan a)v]vl} (4.28a)
and, for Vl< v, <90,
(d) - Va
12 ~ C sec Q {L-n sec a El(gl) + e °(l-« tan a)v]vl}° (4.28Db)

For the cLkyshine part we expand the integral and integrate: for

v, <0 < v

1 2’
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J](.S) P (Cl + CZ)V Ve ’ J;S)w 0, (4.29)
0
and for vy < v, < 0,
(s) _ (s) _
Jl S 05 12 = 0. (4.30)

In egs. (4.27) through (4.29) we have cropped terms of order

2 : . :
x and, in comparison with El(gi), we have neglected terms of order
2

2
vl and v2 :

B. Class ii. Floor and Ceiling Slabs (a = g?.

The method we use in these cases is described in Reference 2,
so we mainly just give the results of using the source indicated
in eq. (2.20).

Floor (a = - nw/2,

We suppose the detector position to be above the center of
a rectangular floor ¥. ¥, is a shape compounded of a centered circle
of radius r, and two. equal, symmetrically placed, annular sectors
having radii r, and r, > r., concentric and with angle Vq. r, is
determined by %he requirement that the solid angle factor
subtended at D by the circle equal that of a concentric square

having side equal to the width of ¥, which is W /3 r, is determined

the same way, with the side of the square equal to the length of I,

the solid angle factor being w and {, is fixed by requiring

Z"i

Ceiling (o = + 1w/2).

Since the skyshine is only about 10% of the total, a coarser

approximation will do. We let Zo be a circle whose radius, Iy is
so chosen that wp F w_., This may be regarded as a special case of
the surface used 3bove to represent the flooxr, one in which I, = I
3 1 v = = =
If ¥ already is a square, Wy W lx and r, rl

automatically hcld, and Zo becomes a circle.

28




i NOLTR 73-137
With
. |
2 - r, = zlxi = z) tan Gi, i=1,2, (4.31)
i we have -1
f l . sec Gi = (l-wz(ﬂ) " i=1,2, (4.32)
E Cpo/ﬂ = (Wz " -U-‘2 (w - f). (4.33)
3 Expressions for the w. may be produced easily from eq.
(4.12). From the form (see egs. (2.3), (2. 20), (3.14), (3.15),
3.12)),
: P : -
] = 2n dg dn(% +n2+l) =k exp L-A(€"+ﬂ2+l)%] a=-3§, (4.34)
3
1
: where
A= a i, (4.35)
: we convert to integration over ZJO . which glves
;,-
jdm 229 e EX +1)*5] +(@o/m) c dxX(x +1) "Texp (-a (1241 ?
A\ (4.36)
=E1(A)-[l-(¢o/n)]El(A sec 61)-(¢1/ﬂ)El(A sec 6,); (4.37)
and from the form,
2 N2 L
B3y 48] antelenten) T (e v 16 2+ TH1?)
no2m x
1
2, 02 m
¥ exp[-Az(g b+ 7] a =+ "4, (4.38)

derived the seme way as eq. (4.34), we find
= -1 + a -1 =
EEO-[ cl{y exp ( axy) ZEl(aZY)} cz{y exp ( azy)

2 -1 1 -2

Y=sec ©
] % (4.39)

+ (l+a_+=~ la2)a E (azy)f
y=1

L 6%
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C. Approximation of the Reduction Factor.

The general approximate form for R is

=
R Ro = L BoiEZoi (4.40)
In most cases the Eo choices described in this section and the last,
e.g. the centered approximation, are adequate approximations to I,
giving results which are off only by a few percent. But Figure 8
shows an example in which the centered approximation to a rectangular
representation of a slab ¥ entails a sizable distortion. Here we

may retain eq. (3.35), but change the values of the v, so that can-
cellation in EZo’ of errors from portions of ¥ near the middle of

and exterior to ¥ , with errors at the corners, in Zo but exterior
to ¥ can occur. This results in 4 slightly smaller in absolute

value than values stemming from eq. (3.36). The best values of Vi

for example, can be estimated by equating the ratio of the areas of
the (right) "triangles" with centroids A and B in the figure to the
values of the integrand of EZ at these two points. Tais condition

gives the base of triangle A, which determines Vye This is the
method we have used to improve the choice of Zo for the long side

walls of the M113 in the next section. For identification purposes
we call this the "reshaping approximation".
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5. "WALLS ONLY" MODEL OF THE M113.

In the phrase "walls only" we intend that the floor and ceiling
surfaces also be included. Figure 8 shows the indexing convention
for the surfaces of the M113. To achieve the idealization implied
by the contents of the figure we have identified the inner framing
plates with the hull walls, ignored a variety of surface bumps and
irregularities, and represented the sides of the vehicle as flat.
Figure 9 is a sketch of the vehicle cross section as seen from the
rear, together with some aspects of the idealization implied by our
procedure.

We choose the detector position to be 30 inches above the
floor, or 45.9 inches above the ground, so that h ¢ = (36 + 45.9)
in = 6.8 ft, and x = .0158. The detector is centered, equidistant
from the two sides, and also more or less is centered with respect
to front and rear, beneath the cupola opening. In Tablzs 1 we list
the data for each of the I,, much of which partially is determined
by choice of detector position. In Table 2 we list the computed

values of the* E_ , the builiup factors, and the r s
Toi Toi

By a process of inspired scrutiny involving eq. (3.30) we have
estimnated crudely a 1.09% refraction correckion; also, w2 assune
a 10% al%edo, so that from eq. (4.40) and Table 2,

R = 1.155R = ,6521 (5.1)

P=gaT=1.53 (5.2)

- wn W % W W W W W W T e e B 4 v 4 + i vme 2 . wmm ee w1 =4 . 4

* For 26(27) we have computed E for the detector position above

Zo
(below) the center of ¥ _(Z,) for simplicity. This is almost
exaxtiy the case for %L, so the error here is small; it is greater
for ©._, but this is to?erable because the total skyshine con-
tribuzion is small, anyway.

1 + Zi, where Z; is the

portion of . above the horizontal plane containing the detector
and L. the "portion below. For %! we have taken uy + u, to take

Also we have divided Zl(=22) into ¢

1 1
account of the shape irregularity. By the remark in paragraph
L ‘ot Sestyem 4, E_t = L(E t + E.,) where L and R refer to the left
% 2 R L]
1 1L 1 g
(u = ul) and right (u = u2) portions of 41.
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M113 (APC)
REAR CROSS SECTION

1

I |
| |
| |
| |
I |
I | |
! 20,61 }
' |
' |
= |
. 4.4 / |

| 0.0 -

-15.9 A
-42.1 0.0 27.3  41.5

FIG. 9 M113 vehicle cross section, from the rear, showing the double wal! structure,
The dotted lines trace out the rectangular cross section for the "walls only" model.
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R -
L= | 5175, Ly 2y Zg e L,
a 0 o |-o.85a°| +as° | -30° | -00° +90¢

t 1.875 1.875 1.500 1.500 1.500 1.500 1.625

49.1 49.1 84.7 95.:2 83.9 30.0 24.5

-X1,Xy| 86.0 [70.0,86.0] 49.1 49.1 49.1 83.1 72.1

y, |[-30.0 o |-15.7 |-72.1 |+13.8 |49.1 |49.1

Y, 0 |+24.3 [+:9.4 |-20.8 |+34.6 H49.1 |+49.1
1o, | 2,02 [1.74,2.02|1.1516 | 1.18161.1211 | --- —

v, |-.520 o [-.3539 | -.2164}-.3575 | --- _—-

v, 0 +.,420 +.2871 +.4407|-.1428 —= ——=
8,,0,(1.0495 F2°5% | .5189 | .5620 .4691 | --- -

vy |--547 0 |-.3618 | -.218 [-.3656 | --- —

" 0 |+.433 |+.2012 | +.456 |-.1433 | --- o

Table 1. Slab data for computing the M113
protection factor in the "walls only”
model. Entries for dimensioned quantities,
in rows 2 - 6, all are expressed in inches;

1 entries in the last three rows, 10 - 12,

' are in radians.

R L
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| 3 et
l Zl=2 21=2, 23 24 25 26 27
EZ .0873 .0114 .0516 .0272 .0101 .0766 .0144
o]
Bo 1.54= 1.548 1.438 1.438 1.438 1.438 1.475
5 .1351 .0176 .0742 .0391 .0145 .1102 .0212
(o]
Table 2.

Attenuation, buildup, and reduction factors for
the surfaces of the "walls only" model of the

M113.
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From eq. (2.6), using L(6.8 ft.) = .86 we find
S=1.32, (5.3)

A
; which is con:iderably smaller than the average value reported in
: Reference 1,

s = 3.41, (5.4)

where variations of detector position did not involve deviations
of more than 10 to 15%.

The results of the simplified model of Section 6 support the
hypothesis that the discrepancy between (5.3) and (5.4) is due to
neglect of shielding effects from material present additionally to
that which resides in the vehicle's surfaces.
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6. PARALLELIPIPED MODEL

The combat loaded waicht of the M1i3 is 24,000 pounds7 while
the weight of material assvmed for the calculation of Section 5

is .
Weherl = P az’ FAis (6.1)
where o, = 2.72p, o= 2.72 X 62.4 $/£t3 = 117 #/¢t3, the density
2
of Aluminum, A, is the arc of T,, and ti its thickness. The
volume factor in eq. (6.1) for the M113 is
T A.t, = 57.96 £t> (M113) (6.2)
Ty
so that Wshell = 9838#, which is only 41% of the combat loaced

weight given above. 1In light of this, the disagreement between
(5.3) and (5.4) is hardly unreasonable. We proceed to a simplified
model and calculation for the M113, based on the information and

experience gained so far.

We idealize the vehicle by a closed shell of uniform thickness
and (possibly heterogeneous) composition. The attenuation constant
for the unscattered component of the radiation due to atoms of

species k is

b " R
when n, is the number density for atoms of species k and o, the
corresponding y-ray cross section. We define an effective thickness,

(6.3)

Eop = Wiy A, (6.4)

where W is the total weight of the fully loaded vehicle and A is
the surface area of the shell used to model it. Then the un-
scattered component penetrating the wall is proportional to

exp(-:lteff) ¢+ where

where
o= (E My & )t 1 (6.5)
= May E fkgk. (6.6)
with
fk = Wk/w (5.7a)
-1
—(Z/A)AL (Z/A)k, (6.7b)
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wherein W, is the weight of material of species k, Z is the number
of electrons on the indicated atom and A the corresponding atomic
weight.

The composition of the M113 was not available to us, so to
estimate p we have modeled the material breakdown as follows:

Aluminum 10,000#
Fuel 2,000#
13/160# dummies 2,100#
Other 9, 900#
Total 24,000

The 'other"entry includes the motor, hatches, gun, treads, etc., of
which we assume about 2/3 to be iron, with specific gravity = 7.86,
and the rest aluminum. The results, together with t he values
assumed or computed for the fk and the gk, are given in Table 3.
The result is

u/uAL = 1,02
so we just take

Ho= W, (6.8)
as the attenuation constant for the shell wall, and

E=ER (6.9)

as its thickness.

In the present model we have concentrated all the material
present into the shell, disregarding effects of the actual, quite
complicated, distribution of matter. 1In the same spirit we choose
the simplest shape to work with, a parallelepiped having a square
vertical cross section of side L, and a height H equal to that of
the actual vehicle. We fix L by equating the surface area of the
square parallelepiped to that of the best rectangular/parallelepiped
representation of the vehicle's actual shape, which we estimate
from the Master Diagram®:

length = 162.3 in
width =  83.0 in. (M113) (6.10)
H = 54.3 in.

2

This gives A= 372 ft™, t = 4,56 in,, L = 118.1 in.

eff
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} Speci . X

5 pecies Sp. Grav Wk(#) fk 9y

] Aluminum 2.7 13,400 .56 1.00

1 Iron 7.86 6,500 .27 .95
Duumies 1.8 2,100 .09 1.10
Fuel 1.0 2,000 .08 1.23

3 Table 3. Estimated material breakdown for the M113.

For all the walls a = 0, so we may use eq. (4.21). We compute
just the direct contribution R d) to R, correcting for skyshine and
albedo together by multiplying by 1.1 (skyshine) x 1.1 (albedo) =
1.21;

f=1.21 R'Y (6.11)

where

(@ _ 2 @
RO = Byltoeg) (B #3450 ) \8,512)
with suffixes £ and w referring to floor and wall, with Bo(tegg)
given by eq. (2.27), and with
(@) . 1 .(4)
Ewi = TT(Jl Il(o))i. (6.13)
We place the detector ?g)the vertical axis through the center

of the square so all the Ew are equal; this also makes Zo a

circle for the floor slab. l For the wall we assume the centered
approximation, egs. (3.35) and (3.36). We assume the detector to
be at a height h_ above the floor. Collecting all the necessary

€ formulas specialized to this case we have:
Pl -k =1.21r9Y (6. 14a)
(d) _ . (d)
= Bo(teff) (Ef + 4 Ew ) (6.14Db)
Bo(teff) =1+ ,292 teff (in) (6.14c)
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Ef = c(El(A) - El(A sec 91) ) (6.144)
A = ag + u, ag = uALteff (6.14e)
x = .002314(£6) L+ (h_+ 15.9 in + 3 ££),  (6.14)
sec el = (1 - wf)-l (6.14q9)
w, = a1 tan”! §§f(1 + 2g§f)';i (6.14h)
S,¢ = I/(2n)) (6.141)
Eéd)= nt J{d)ll(o} (6.145)
1,(0) = s(a.,0, = 45°) (6.14k)
J, = cE/(C)), = .2034 + .783x, (6.144)
G -nvil (6.14m)
v, = -2hf/L (6.14n)

The sources, respectively, are egs. (2.5) and (6.10), (6.11),

(2.27), (4.37), (4.35) and (3.29), (2.8) and (2.22)(with h = h_ + 15.9
in. replacedby h + pah, Ah = 3 ft ground roughness, and where 15.9

is the height above ground of the floor slab), (4.32), (4.10) and
(4.12), (3.11), (4.21), (3.35) and (4.22), (4.27b) and (2.25),
(4.26), and (3.36).

We have not included a refraction correction here as we did in
Section 5(cf. eq. (5.1) since the magnitude of the effectywhich is
the"softening" of the unscattered attenuation at large 8;, is well
overshadowed by that arising from the irregularities of the actual
mass distribution. Also, the neglect of shape effects implied by
the assumption of square vertical cross section renders such a
consideration doubtful. Finally, a 5% correction can be absorbed
by modelling the vehicle so that L is a little smaller; for the
M113 changed, slightly smaller, dimensions of the "best" rectangular
parallepiped representation of the vehicle's actual shape involve
estimates as reasonable as those given in (6.10). A similar remark
holds for the P7.

We see from eqgs. (6.14) that P and R are fixed as functions of

hf when teff and L are given, as, e.g., in (6.10) for the M11l3. The

answers , for two choices of detector height, hf, above the floor of
the vehicle, are

40
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R = R(hf) = ,2734 hf = 25.9 in,
} (6.15)
= ,2544 hf = 45,9 in.
so that
. P(25.9 in) = 3.66
P(45.9 in) = 3.93 (6.16)
and, by eq. (2.6), § = .86 P,
$(25.9 in.)= 3.15
. (6.17)
$(45.9 in,)= 3.38

From Reference 1, for pesitions 18 in from the (two) side walls,
experiment gives i

$(47.25 in,)= 3.59, 3.07}

(6.18a)
$(49.25 in.)= 3.76, 3.24

which gives an idea of the experimental spread arising from the
matter distribution. The average of these values of S is 3.42,
suggesting

$(48.25 in)= 3.4 = .3. (6.18b)
Experiment also gives, 27 in. from the left wall,
8(31 in.) = 3.61, (6.18c)

a value within the indeterminacy* indicated in (6.18b).
Comparing these values with our computed result, egs. (6.17), we
see that the agreement is good. ("Too good", of course; a 15%
albedo weakens the agreement by 5%.)

Turning to the marine corps LVTP7, we take8

length = 293.0 in.
width = 103.6 in. (P7) (6.19)
H = 78.0 1in.
which gives A = 851 ftz, teff = 4.33 in, L = 181.6 in, and
hf = 25.9 in.: R = .2562, P = 3.90, §$ = 3.35
c (6.20)
hf = 45,9 in. : R = .2471, P = 4.05, S = 3.48

*As distinguished from "uncertainty!
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We adopt for the residual radiation transmission factor (RRTF)
the following:

M113: RRTF = S-l = (3.4)-l = ,29 experiment
s = (3.5)"! « .29 theory {6521}
. P7: RRTF = st (3.7)-l = .27 theory. (6.22)

Accordingly we recommend the adoption of the value
RRTF = .3 (LVTP7). (6.23)
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7. DISUCSSION

The RRTF for both vehicles is 0.3 despite the fact that the P7
weighs more than twice as much as the M1l3. Note, however, that
tM113 = 4,56 in and tP7 = 4,33 in, so the model wall thickness,

eff eff
which is a principal determining factor, is nearly the same for the
two cases. This reflects the fact that the extra weight is a size

effect, LMll3 = 118,11 in and HM113 = 54,3 in. being somewhat less

than the corresponding values for the P7, LP7 = 181.6 in. and ®P7 =
78.0 in. Moreover, since the floors of both vehicles are
15.9 in. from the ground, equal values of hf and h mutually imply

. M113 :
each other; and since HP7 > H, proportionately more of the total

mass of the P7 than of the M11l3 lies above the horizontal plane
through the detector position. This means that much of the P7's
added mass is positioned so that it protects only against the
relatively ineffectual skyshine "threat" (6>n/2).

43




TS ———

Nk o bt it e

Adadidia)

NOLTR 73-137

8. SUMMARY AND CONCLUDING REMARK

We have computed the residual radiation transmission factor for
the Marine Corps LVTP7 to be 0.3, based on a model of the mass
distribution whose results for application to a similar vehicle, the
army APC M113, agree with experiment.

We have accomplished this by developing a new analytical
approximation scheme for transmission through a rectangular
(wall) slab. The scheme has a wide range of applications, to
the case where the plane of the slab is not too close to the
horizontal: specifically, |a| not too close to cos—lx
The method employs the approximation that the conics determined by the
intersection of the cones of constant 6 with <he plane of the slab
coincide with the hyperbolic arcs of a natural elliptical coordinate
system in the plane of I. The coordinate system is chosen by
requiring the conic determined by cos 6 = x, along which the source
angular distribution maintains its peak value, to coincide witk the
corresponding hyperbolic arc. Finally, I is replaced by an approxima-
tion, , more convenient for calculation: the boundaries of Zo
are segﬁents of ellipses (sides) and hyperbolas (top and
bottom) "parallel” to the curvillinear axes of the natural coordinate
system for the problem.

We remark, finally, that the use of natural coordinates should
simplify mesh size problems encountered in programming the surface
integrals for numerical integration, at a considerable savings in
computer time. and cost. Small mesh sizes can be chosen for the
v-integration, probing the rapid variation of the source function
through the peak near cos6 =x , and large mesh sizes will suffice
for the v-integration since the v-dependence of the integrand is
relatively weak.
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